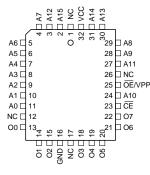


Features

- Fast Read Access Time 70ns
- Low-Power CMOS Operation
 - 100 μA max. Standby
 - 20 mA max. Active at 5 MHz
- JEDEC Standard Packages
 - 28-Lead 600-mil Windowed CDIL
 - 32-Lead Windowed LCC/JLCC
- 28-Lead Custom
- 5V ± 10% Supply
- High-Reliability Atmel CMOS die Technology
 - 2,000V ESD Protection
- 200 mA Latchup Immunity
- Rapid™ Atmel Programming Algorithm 100 mms/byte (typical)
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Commercial, Industrial, Mil Temperature Ranges inc Hi-Rel /DMB/8 883 5004/5005

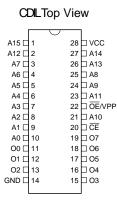
Description


The FT27C512R is a low-power, high-performance 524,288-bit UV erasable programmable read only memory (UVEPROM) organized 64K by 8 bits. It requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 45 ns, eliminating the need for speed reducing WAIT states on high-performance microprocessor systems.

Atmel's die in CMOS technology provides high-speed, lower active power consumption, and significantly faster programming. Power consumption is typically only 8 mA in Active Mode and less than 10 μ A in Standby.

Pin Configurations

Pin Name	Function
A0 to A15	Addresses
00 - 07	Outputs
CE	Chip Enable
OE/VPP	Output Enable/VPP
NC	No Connect


LCC/JLCC Top View

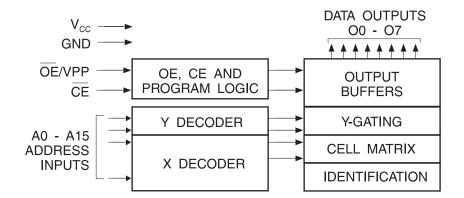
Note: LCC/JLCC Package Pins 1 and 17 are DON'T CONNECT.

512K (64K x 8) UVEPROM

FT27C512R

(continued)

The FT27C512R is available in a choice of industry standard JEDEC-approved UV erasable re-programmable Ceramic CDIL, LCC, JLCC, Custom packages. All devices feature two-line control (\overline{CE} , \overline{OE}) to give designers the flexibility to prevent bus contention.


With 64K byte storage capability, the FT27C512R allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Force's 27C512R has additional features to ensure high quality and efficient production use. The Rapid[™] Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 µs/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages. Atmel die gives Atmel signature.

System Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device non-conformance. At a minimum, a 0.1 μ F high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias55°C to + 125°C
Storage Temperature65°C to + 150°C
Voltage on Any Pin with Respect to Ground2.0V to + 7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0V to + 14.0V ⁽¹⁾
V _{PP} Supply Voltage with Respect to Ground2.0V to + 14.0V ⁽¹⁾

- *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- Note: 1. Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V dc which may overshoot to +7.0 volts for pulses of less than 20 ns.

Operating Modes

Mode\Pin	CE	OE/V _{PP}	Ai	Outputs
Read	V _{IL}	V _{IL}	Ai	D _{OUT}
Output Disable	V _{IL}	V _{IH}	X ⁽¹⁾	High Z
Standby	V _{IH}	X ⁽¹⁾	Х	High Z
Rapid Program ⁽²⁾	V _{IL}	V _{PP}	Ai	D _{IN}
PGM Inhibit	V _{IH}	V _{PP}	X ⁽¹⁾	High Z
Product Identification ⁽⁴⁾	V _{IL}	V _{IL}	$A9 = V_{H}^{(3)}$ $A0 = V_{IH} \text{ or } V_{IL}$ $A1 - A15 = V_{IL}$	Identification Code

Notes: 1. X can be V_{IL} or V_{IH} .

2. Refer to Programming Characteristics.

3. $V_{H} = 12.0 \pm 0.5 V$.

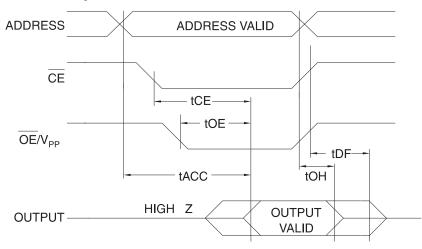
Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

DC and AC Operating Conditions for Read Operation

			FT27C512R							
		-45	-55	-70	-90	-12	-15			
	Com.			0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C			
Operating Temp.(Case)	Ind.			-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C			
10mp.(0000)	Mil			-550C-1250C	-550C-1250C	-550C-1250C	-550C-1250C			
V _{CC} Supply	+	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	$5V\pm10\%$			

DC and Operating Characteristics for Read Operation

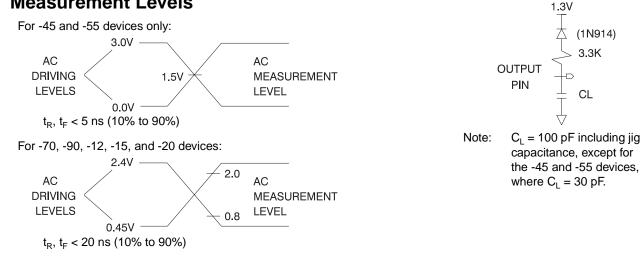
Symbol	Parameter	Condition		Min	Max	Units
	Input Load Current		Com., Ind,		±1	μA
I _{LI}	Input Load Current	$V_{IN} = 0V$ to V_{CC}	Mil .		±5	mA
1	Output Leakage		Com., Ind,		±5	μA
I _{LO}	Current	$V_{OUT} = 0V$ to V_{CC}		±10	mA	
1	V _{CC} ⁽¹⁾ Standby	I_{SB1} (CMOS), $\overline{CE} = V_{CC \pm} 0.3V$	I_{SB1} (CMOS), $\overline{CE} = V_{CC \pm} 0.3V$			
I _{SB}	Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC+} 0.5V			1	mA
I _{CC}	V _{CC} Active Current	f = 5 MHz, Iout = 0 mA, \overline{CE} = V _{IL} /In	d,mil		20/25	mA
V _{IL}	Input Low Voltage			-0.6	0.8	V
V _{IH}	Input High Voltage			2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA			0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V	


Notes: 1. V_{CC} must be applied simultaneously with or before \overline{OE}/V_{PP} and removed simultaneously with or after \overline{OE}/V_{PP} .

AC Characteristics for Read Operation

								FT270	C512F	ł					
				45	-{	55	-7	70	-9	90	-1	2	-*	15	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{ACC} ⁽³⁾	Address to Output Delay	$\overline{CE} = \overline{OE} / V_{PP} = V_{IL}$						70		90		120		150	ns
t _{CE} ⁽²⁾	\overline{CE} to Output Delay $\overline{OE}/V_{PP} = V_{IL}$							70		90		120		150	ns
t _{OE} ⁽²⁾⁽³⁾	OE/V _{PP} to Output Delay	$\overline{CE} = V_{IL}$						30		35		35		40	ns
t _{DF} ⁽⁴⁾⁽⁵⁾	\overline{OE}/V_{PP} or \overline{CE} High to Output Float, whichever occurred first							25		25		30		35	ns
t _{OH}	Output Hold from Address, \overline{CE} or \overline{OE}/V_{PP} whichever occurred first							0		0		0		0	

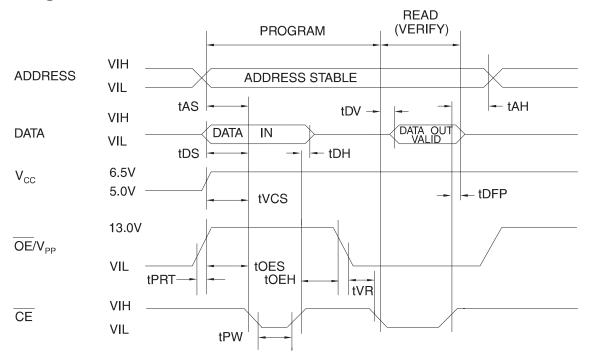
Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.


AC Waveforms for Read Operation⁽¹⁾

- Notes: 1. Timing measurement reference level is 1.5V for -45 and -55 devices. Input AC drive levels are $V_{IL} = 0.0V$ and $V_{IH} = 3.0V$. Timing measurement reference levels for all other speed grades are $V_{OL} = 0.8V$ and $V_{OH} = 2.0V$. Input AC drive levels are $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$.
 - 2. \overline{OE}/V_{PP} may be delayed up to t_{CE} t_{OE} after the falling edge of \overline{CE} without impact on t_{CE} .
 - 3. \overline{OE}/V_{PP} may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} .
 - 4. This parameter is only sampled and is not 100% tested.
 - 5. Output float is defined as the point when data is no longer driven.

Input Test Waveforms and Measurement Levels

Output Test Load


Pin Capacitance

 $(f = 1 \text{ MHz T} = 25^{\circ}\text{C})^{(1)}$

	Тур	Мах	Units	Conditions
C _{IN}	4	6	pF	V _{IN} = 0V
C _{OUT}	8	12	pF	V _{OUT} = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms⁽¹⁾

Notes: 1. The Input Timing Reference is 0.8V for $\rm V_{IL}$ and 2.0V for $\rm V_{IH}.$

2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.

DC Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C, V_{CC} = 6.5 \pm 0.25V, \overline{OE}/V_{PP} = 13.0 \pm 0.25V$

			Lir		
Symbol	Parameter	Test Conditions	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		±10	μA
V _{IL}	Input Low Level		-0.6	0.8	V
V _{IH}	Input High Level		2.0	V _{cc} + 1	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{он}	Output High Voltage	I _{OH} = -400 μA	2.4		V
CC2	V _{CC} Supply Current (Program and Verify)			25	mA
PP2	OE/V _{PP} Current	$\overline{CE} = V_{IL}$		25	mA
V _{ID}	A9 Product Identification Voltage		11.5	12.5	V

AC Programming Characteristics

 $T_{A} = 25 \pm 5^{\circ} C, \ V_{CC} = 6.5 \pm 0.25 V, \ \overline{OE}/V_{PP} = 13.0 \pm 0.25 V$

			L	.imits		
Symbol	Parameter	Test Conditions ⁽¹⁾	Min	Min Max		
t _{AS}	Address Setup Time		2		μs	
t _{OES}	OE/V _{PP} Setup Time		2		μs	
t _{OEH}	OE/V _{PP} Hold Time	Input Rise and Fall Times	2		μs	
t _{DS}	Data Setup Time	(10% to 90%) 20ns	2		μs	
t _{AH}	Address Hold Time		0		μs	
t _{DH}	Data Hold Time	Input Pulse Levels 0.45V to 2.4V	2		μs	
t _{DFP}	CE High to Output Float Delay ⁽²⁾	Input Timing Reference Level	0	130	ns	
t _{VCS}	V _{CC} Setup Time	0.8V to 2.0V	2		μs	
t _{PW}	CE Program Pulse Width ⁽³⁾		95	105	μs	
t _{DV}	Data Valid from CE ⁽²⁾	Output Timing Reference Level 0.8V to 2.0V		1	μs	
t _{VR}	OE/V _{PP} Recovery Time		2		μs	
t _{PRT}	OE/V _{PP} Pulse Rise Time During Programming		50		ns	

Notes: 1. V_{CC} must be applied simultaneously or before \overline{OE}/V_{PP} and removed simultaneously or after \overline{OE}/V_{PP}

2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven—see timing diagram.


3. Program Pulse width tolerance is 100 $\mu sec \pm 5\%.$

FT27C512R Integrated Product Identification Code-Atmel Die

		Pins					Hex			
Codes	A0	07	O 6	O5	O4	O3	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	0	0	0	0	1	1	0	1	0D

Rapid Programming Algorithm

A 100 μ s \overline{CE} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and \overline{OE}/V_{PP} is raised to 13.0V. Each address is first programmed with one 100 μ s \overline{CE} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μ s pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. \overline{OE}/V_{PP} is then lowered to V_{IL} and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

FT27C512R

Ordering Information

t _{ACC}	I _{cc}	(mA)			
(ns)	Active	Standby	Ordering Code	Package	Operation Range
70	20	0.1	FT27C512R-XXDC	WinCDIL	Commercial
			FT27C512R-XXLC	WinLCC	(0°C to 70°C)
			FT27C512R-XXKC	WinJLCC	
			FT27C512R-XX-xxx	xxx-Custom	
	20	0.1	FT27C512R-XXDI	WinCDIL	Industrial
			FT27C512R-XXLI	WinLCC	(-40°C to 85°C)
			FT27C512R-XXKI	WinJLCC	
			FT27C512R-XXTI-xxx	xxx-Custom	
	20	0.1	FT27C512R-XXDM	WinCDIL	Military
			FT27C512R-XXLM	WinLCC	(-55°C to 125°C)
			FT27C512R-XXKM	WinJLCC	

	Package Type						
JLCC	JLCC 32-Lead, Ceramic J-Leaded Windowed Chip Carrier (JLCC)						
CDIL	CDIL 28-Lead, 0.600" Wide, Ceramic Windowed Dual Inline Package (PDIP)						
LCC	32-Lead,Ceramic Windowed LCC (LCC)						
DMB/DMB8	DMB=tested to Mil-Std-883 Method 5004 DMB8=tested to Mil-Std-883 method 5005						

Ashley Crt, Henley, Marlborough, Wilts, SN8 3RH UK Tel: +44(0)1264 731200 Fax:+44(0)1264 731444 E-mail info@forcetechnologies.co.uk tech@forcetechnologies.co.uk sales@forcetechnologies.co.uk

www.forcetechnologies.co.uk

Unless otherwise stated in this SCD/Data sheet, Force Technologies Ltd reserve the right to make changes, without notice, in the products, Includ -ing circuits, cells and/or software, described or contained herein in order to improve design and/or performance. Force Technologies assumes no responsibility or liability for the use of any of these products, conveys no licence or any title under patent, copyright, or mask work to these products, and makes no representation or warranties that these products are free from patent, copyright or mask work infringement, unless otherwise specified.

Life Support Applications

Force Technologies products are not designed for use in life support appliances, devices or systems where malfunction of a Force Technologies product can reasonably be expected to result in a personal injury. Force Technologies customers using or selling Force Technologies products for use in such applications do so at their own risk and agree to fully indemnify Force Technologies for any damages resulting from such improper use or sale.

All trademarks acknowledged

Copyright Force Technologies Ltd 2003